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Abstract

As flexible work arrangements become increasingly prevalent in the labor market, more
and more workers have discretion over when they take rest breaks—a feature that is likely
appealing to many. Yet we do not have a formal economic model of the decision to take
breaks, nor do we know how much workers value this ‘breaks’ flexibility. To fill the gap,
I develop and estimate the first dynamic model of daily labor supply that endogenizes
rest breaks. The model includes several factors that influence the decision to take breaks:
fatigue, opportunity costs, preferences across hours of the day, and random utility shocks.
I estimate the model using high-frequency data on millions of taxi trips covering over
14,000 drivers in NYC during an entire year. This allows me to characterize heterogeneity
across drivers in a transparent non-parametric way, estimating the model separately for
each driver. Using the estimated parameters, I first evaluate the welfare loss to workers if
discretionary breaks were replaced by scheduled breaks. My results show that flexibility
is valued highly: the average driver in my sample would require a 23 percent increase
in revenue to accept a counterfactual fixed work schedule. Further, I find substantial
heterogeneity in this valuation, indicating that for some workers, discretionary breaks
bestow a large non-pecuniary benefit. I then use the model to study the effects of a realistic
‘mandatory breaks’ policy on the frequency of breaks and labor supply. Counterfactual
evidence shows that such a policy would substantially increase the frequency of breaks
but would reduce labor supply by 6 to 9 percent. This result highlights the need to
weigh the benefits of break-oriented policies—including a reduction in accidents—with
the negative consequences for labor supply and the welfare of workers. While I use a
specific industry to estimate the model, the proposed framework is quite general and can
be applied in various other contexts, helping understand how workers in a given industry
make their short-term labor supply decisions.
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1 Introduction

With the decline of traditional work arrangements—the nine-to-five workday—and

the shift toward greater scheduling flexibility in the labor market,1 discretionary rest

breaks have become an increasingly common feature of many jobs. During their regular

workday, freelancers, academics, white-collar managers, and taxi drivers—to name a

few—can all choose when and how many rest breaks to take. This appealing flexibility

allows workers to tailor the frequency of breaks to their personal preferences, and as

such, is likely part of the explanation for the well-documented increase in flexible work

arrangements. Yet we do not have a formal economic model of discretionary breaks,

nor do we know how much workers value this ‘breaks’ flexibility.

In this paper, I develop and estimate the first dynamic model of daily labor supply

that endogenizes rest breaks. The model focuses on forward-looking workers who need

to decide each period whether to work, take a break, or end their workday. Several

different factors are allowed to influence the labor supply decision: the disutility of

fatigue while working, the opportunity cost of a break (forgone earnings), the fixed cost

of switching from work to a break, and random utility shocks. I show that this can be

structured in a dynamic discrete choice model that shares many similarities with Rust’s

(1987) bus engine replacement problem.

I use the model to shed light on three aspects of short-term labor supply. First, the

estimates clarify the relative importance of the factors affecting short-term labor supply

decisions, especially breaks. Second, I quantify workers’ valuations of ‘breaks’ flexibility,

including heterogeneity in those valuations. Third, I am able to simulate the effects of

a policy seeking to increase the frequency of breaks.

To estimate the model, I focus on the New York City (NYC) taxi industry, using

transaction-level data covering the universe of taxi trips. Based on more than 170

million taxi fares, I construct a dataset which contains the daily labor supply decisions

of 14,190 drivers over an entire year.2 The New York City taxi industry is a suitable

1Some industries have been particularly affected by this trend. Abraham et al. (2018b) estimate that
self-employment in the transportation sector has grown by 298% between 2010 and 2016. Administrative
data also show a rise in the number of self-employment in the overall labor market (Jackson et al.,
2017; Katz and Krueger, 2019; Abraham et al., 2018a).

2There are more than 40,000 unique driver identifiers in the data. I restrict my analysis to these
14,190 drivers as they display behaviors indicating that they rent their vehicles. The exact restrictions
are explained in Appendix A.
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setting to study the decision to take breaks given that drivers have full flexibility over

when to take breaks and for how long. It also has important parallels with many recently

emerging jobs that feature scheduling flexibility.

The richness of the data allows me to estimate heterogeneity across drivers in a very

flexible manner. While I use all drivers to obtain the law of motion for the market wage,

I estimate the parameters of the utility function separately for each driver. In doing so,

I am able to recover a fully non-parametric distribution of the set of utility parameters.

The interpretation of such heterogeneity is transparent: individuals have different costs

of effort, different responsiveness to earnings, different preferences for taking breaks at

certain hours-of-the-day, etc. Understanding this worker heterogeneity is key if we want

to characterize who will be most affected by a given policy, as will be important below.

Measurement error in the labor supply decision is possible because the dataset does

not contain explicit information about whether the driver is taking a break or whether

he3 is searching for a fare. Previous studies have imposed a simple fixed threshold to

classify long wait times between fares as a break, an obvious problem with this being the

systematic misclassification of long search times as ‘breaks’ when demand falls. I address

this problem using the spatial nature of a taxi driver’s working environment: long wait

times are categorized as breaks using a threshold that varies with market conditions. I

also control for longer driving times that arise when returning from a remote dropoff

location by computing the optimal driving time from the previous dropoff to the next

pickup.4

The model builds in several key reduced-form features of the data. First, it accounts

for unobserved heterogeneity, given the differences in the average duration of a shift

and the average time on a break observed across drivers. Second, the probability of

taking a break increases with the length of continuous work time, suggesting that

higher levels of fatigue increase the probability of taking a break. Third, I show that

they take into account the end of their rental period, indicative of the fact that taxi

drivers are forward-looking. Fourth, to show that drivers respond to varying opportunity

costs, I replicate a standard methodology in the literature to estimate the labor supply

elasticity of earnings. Specifically, I measure labor supply as the time working and find

3The taxi industry is still, to this day, male-dominated. According to a report by the NYC Taxi and
Limousine Commission, fully 98.9% of taxi drivers are male (Taxi and Limousine Commission, 2014).

4I use a routing engine with road network data from OpenStreetMap to calculate this distance for
the 170 million medallion taxi trips made in 2013.
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a much higher labor supply elasticity compared to the usual case where labor supply

is measured as the time working or on breaks. This supports the plausible view that

drivers recognize that taking a break when demand is low is less costly than when

demand is high.

While the basic formulation is general, I make use of a particular feature of the

taxi industry in specifying the model: most taxi drivers have a rental agreement for the

vehicle they drive and rent for either the day shift (5 AM to 5 PM) or the night shift (5

PM to 5 AM). The 12-hour rental period makes this a finite-horizon problem, which

can be solved by backward induction. The development of the model is also guided by

a short survey I conducted in July 2018 with 42 NYC medallion taxi drivers, which

indicated that taking a break in the city was a complex, salient decision they faced

every day.5

To estimate the model, I employ the nested fixed point algorithm of Rust (1987). I

find that the fixed cost of taking a break is very important in the NYC taxi industry,

with a monetary value of about $25 for the average driver (or about 45 minutes of

revenue). Not least, taking a break for a taxi driver requires that they locate a parking

place, often a challenge in Manhattan. I also find that the effect of fatigue on utility is

non-negligible, with a total daily cost of fatigue being equivalent to 38% of earnings.

Further, random shocks, which could include the luck of finding one of the rare taxi

relief stands, are important.6

Using the structural estimates of the model, I run several informative counterfactual

experiments. First, I look at the difference in workers’ surplus between the flexible

environment observed in the data and a hypothetical fixed work schedule. I find

that workers value scheduling flexibility highly. To accept the hypothetical fixed work

schedule, the average NYC taxi driver would require an extra $63 in revenue per day

(about 23% of daily revenue), with a standard deviation of $42 indicating a high degree

of heterogeneity across drivers.

Second, I study the effects of a ‘mandatory breaks’ policy, where workers are forced

to stop working—by either taking a break or ending their shift—after a certain period of

uninterrupted work. Such breaks-oriented regulations are widespread in industries where

5Other evidence from the survey indicated that heterogeneity across drivers is important.
6There are 68 taxi relief stands in NYC. These street parking places give an opportunity to taxi

drivers to leave their vehicles and take care of personal needs.
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fatigue can have potentially fatal consequences (e.g. truck driving or air traffic control).

In a taxi context, traffic accidents and vehicle insurance create a moral hazard problem

whereby the driver might take more risk than would be socially optimal, perhaps

justifying policy interventions. When I compare the current laissez-faire environment

(in terms of breaks) to the counterfactual ‘mandatory breaks’ policy, I find that a

regulation of this type would achieve the goal of increasing the frequency of breaks.

However, it would also decrease overall labor supply by 6 to 9 percent due to drivers

taking more breaks and working shorter shifts. This result highlights the need to weigh

the benefits of break-oriented policies—including a reduction in accidents—with the

negative consequences for labor supply and the welfare of workers.

While I use a specific industry in this study, the model is quite general. Most jobs

with discretionary breaks can be thought of as involving hour-by-hour decisions over

when to take a break—exactly the model’s focus. In this way, it can be applied to various

other contexts to understand how workers in a given industry make their short-term

labor supply decisions.

In the remainder of this paper, I explain the paper’s contribution in the context of

prior work in Section 2. Then in Section 3, I describe the data and the methodology

used to infer labor supply decisions. Section 4 documents reduced-form patterns in the

data that support the modeling assumptions I make. The model is set out formally in

Section 5. In Section 6, I describe the estimation strategy and present the parameter

estimates. Then I discuss counterfactual experiments and the results from these in

Section 7. Section 8 concludes.

2 Relation to the Literature

This paper builds on several important areas of prior research. First, it adds to the

recent literature quantifying the value of flexibility in the context of alternative work

arrangements. The recent growth in the demand for independent contractors and other

flexible work arrangements has attracted the attention of many researchers, including

economists.7 It has been suggested that the biggest benefit of independent work is the

7There seems to be a consensus around the fact that alternative work arrangements are growing,
but the magnitude of the phenomenon is still debated (Jackson et al., 2017; Abraham et al., 2017).
Stanford (2017) argues that this is not a new phenomenon, but a return to previous work organization
strategies that were commonplace in previous centuries.
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labor supply flexibility it offers, both in terms of the overall quantity of hours and being

able to choose specific times one wishes to work (Oyer, 2016).

Two important studies look at the valuation of scheduling flexibility. In an innovative

paper, Chen et al. (2017) seek to estimate the value of flexibility in the labor market

using Uber drivers. Their identification strategy revolves around the idea that a driver

supplying work during a given hour has a reservation wage lower than the expected

wage, and vice versa. This allows them to model the reservation wage as a function of

a time-varying mean and random utility shocks. They find that the drivers’ surplus

compared to a traditional work arrangement is equivalent to 40 percent of their total

pay.8 My study extends their work in two ways. First, I focus on a smaller time-frame

per period (30-minute periods instead of one-hour), which allows me to identify the value

of short discretionary rest breaks. Second, I use a dynamic discrete choice framework

to model the labor supply decision rather than a static model of the reservation wage.

In a similar vein, Mas and Pallais (2017) use job postings to recover the valuation

of scheduling flexibility based on revealed preference. Their randomized experiment

looks at three aspects of flexible work arrangements: working from home, being able

to set the number of hours in a week, and being able to choose when to work. Breaks

are not the focus of their analysis. They find a small average willingness to pay for

scheduling flexibility but note that the considerable heterogeneity in valuations suggests

that analyses based on the mean could be misleading. Interestingly, they also consider

the value of jobs that permit employers to change a worker’s schedule at short notice.

They find that the average applicant is willing to give up 20 percent of their wage to

avoid this alternative arrangement.9

The second literature this paper contributes to focuses on settings with flexible hours

to understand short-term labor supply decisions. Since the seminal work of Camerer et al.

(1997), data on daily labor supply have been used to test the neoclassical labor supply

model against models with reference-dependent preferences. Several contributions in

this literature, including Camerer et al. (1997), Fehr and Goette (2007), and Crawford

and Meng (2011) found evidence supporting reference dependence. This conclusion has

8Other researchers have been able to use data from Uber to study labor market outcomes (e.g.
Hall et al., 2017; Cook et al., 2018). In 2013, the period for which I have data, Uber accounted for a
minuscule share of trips in NYC. Since then, the growth of Uber around the world has been exponential.

9Because of features of the jobs posted, the authors were not able to offer flexibility within a shift:
only the start time and end time of a shift were allowed to vary.
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been challenged in other papers (Oettinger, 1999; Farber, 2005, 2008a; Stafford, 2015).

In all of these studies, however, the measure of labor supply employed is always the

difference between the end time and the start time of a shift, and so cannot shed light

on within-shift labor supply decisions such as breaks.

More recently, the availability of the digital records of each taxi trip in New York

City—the dataset used in this paper—has generated considerable interest from re-

searchers. Most notably, Farber (2015) replicated the methodology of Camerer et al.

(1997) using this newly available dataset. His findings suggest that most taxi drivers

behave in a way that supports the neoclassical model. In this paper, I follow this

view and model workers as neoclassical optimizing agents. Recent studies show that

reference dependence can explain some specific behaviors of taxi drivers but those are

not necessarily of first-order importance in my analysis.10,11

Instead of a reduced-form approach, two recent studies have used a structural

dynamic discrete choice framework to model the daily labor supply decisions of taxi

drivers. Fréchette et al. (2018) develop a general equilibrium model of the taxi industry

in NYC. Within the model, taxi drivers decide endogenously how much labor to supply

each hour. Their labor supply model shares some similarities with the one in this paper.

First, a ‘period’ is defined as a unit of time. In contrast, many papers have equated a

period with a fare (Farber, 2005; Thakral and Tô, 2017; Buchholz et al., 2018), giving

rise to periods of different length; and it is unclear how that can be adapted to study

within-shift breaks. Second, taxi drivers solve a finite-horizon problem. Third, because

the time horizon is short, drivers are assumed not to discount within-day payoffs. For

computational simplicity, however, they assume that breaks are exogenous. Buchholz

et al. (2018) also model the decision to end a driver’s shift as a dynamic discrete choice

problem. They find empirical support for both neoclassical and behavioral responses

and propose a new estimator that relaxes some assumptions regarding the error term.

10For example, Thakral and Tô (2017) propose a model of adaptive reference points. This can be
interpreted as a model midway between the standard reference dependence model and the neoclassical
model. In another paper (Schmidt, 2018), I show that taxi drivers respond to idiosyncratic windfall
gains in a manner consistent with reference dependence, but respond to variation in the aggregate
wage in a way consistent with the neoclassical model.

11The NYC taxi dataset has also been used in other contexts that are further away from this paper.
For instance, Haggag and Paci (2014) look at tipping behaviors; Mangrum and Molnar (2017) study
the marginal congestion of a taxi; and Buchholz (2018) looks at inefficiencies created by regulations in
the taxi industry. The dataset has even been used to study informational leakage from the Federal
Reserve (Finer, 2018).
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None of these previous studies has focused on breaks within the day, although there

is an acknowledgment that breaks may be a potential confounding factor and so need

to be defined. For instance, Farber (2005) and Thakral and Tô (2017) use constant

thresholds of 30, 60 and 90 minutes to define breaks, depending on location. Similarly,

breaks are considered exogenous in Fréchette et al. (2018), who use a fixed threshold of

45 minutes between two trips as the definition of a break. In Section 3.3, I explain in

more detail the possible problems arising from previous definitions of breaks, and I also

propose solutions to those issues.

My paper also relates to a third area of the literature: the consequences of fatigue

and breaks. While this phenomenon has been largely ignored in economics, fields such

as ergonomics, sleep research, or management have studied this question actively. Many

field experiments have documented the decline in productivity or work safety due to

fatigue. In turn, the modeling decisions I make are based on the well-accepted view

that breaks are an important mechanism through which workers can reduce their level

of fatigue (Jett and George, 2003; Hideg and Trougakos, 2009).

The relationship between productivity, working hours, and fatigue has been rec-

ognized for a long time (see e.g. Goldmark and Brandeis, 1912 and Vernon, 1921).

More recently, Brachet et al. (2012) look at the performance of paramedics over the

course of their shift, finding a 0.76 percent increase in 30-day mortality of the patients

treated at the end of the shift. Collewet and Sauermann (2017) use data from a call

center to estimate the reduction in productivity over a work day. Interesting research

by Pencavel (2015, 2016) uses data from WWI munition workers to understand how

fatigue and recuperation time affect productivity, and Henning et al. (1997) and Pendem

et al. (2016) use data entry-workers and fruit harvesters, respectively, to document the

positive effect of rest breaks on productivity.

An extensive literature studies the effect of breaks on the risk of work accidents and

road accidents (Tucker (2003) provides a review). In this literature, the most related

study is by Dalziel and Job (1997). They analyze vehicle accidents and fatigue in

the context of taxi drivers. Using survey data on 42 Australian drivers, they find a

significant negative correlation between break time and the accident rate. Furthermore,

they document optimism bias among drivers regarding their ability to avoid accidents

and to drive safely while fatigued. This finding suggest that it may be optimal for

authorities to implement breaks-related regulations despite possible negative effects on
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the direct welfare of drivers.

3 The New York City Taxi Data

An obvious barrier to study labor supply microdecisions is the scarcity of high-frequency

data from a setting where these decisions are made in a decentralized way. Furthermore,

studying heterogeneity requires many individuals and many observations for each

individual. To address these issues, I take advantage of transaction-level data covering

the universe of taxi trips in NYC to infer daily and within-day labor supply decisions

of drivers. While the official purpose of this dataset was not to study labor supply

decisions, it contains an incredible amount of information covering more than 40,000

drivers over an entire year, 2013. I start with a brief description of the institutional

environment taxi drivers work in. Then I describe the data and explain how I construct

the individual labor supply decisions.

3.1 Institutional background

The taxi industry has historically been heavily regulated throughout the world. Very

much in line with that, operating a taxicab in New York City requires a medallion

(attached to the vehicle) and a NYC Taxi and Limousine Commission (TLC) driver’s

license. In 2013, the number of medallions was capped at 13,437 (see Taxi and Limousine

Commission, 2014). At that time, the market price of a medallion was at an all-time

high, reaching over $1 million. In this environment, most taxi drivers did not own the

medallion but rather rented it from the owner or an intermediary (called a taxi garage).

The TLC imposes a lease cap whereby the owner of a medallion cannot charge more

than a price ceiling. In 2013, the daily lease rate was between $115 to $139, depending

on the day of the week and whether it was the day or the night shift.12

The NYC medallion taxi industry has one unique feature compared to the taxi

industry in other North American cities: there is no central dispatcher. In other words,

it is impossible for a customer to book a taxi trip, as medallion taxis almost exclusively

12On June 20, 2013, the TLC decreased the daily lease cap by $10 but allowed the medallion
owner to charge $10 for credit card processing fees per shift, making the new rule revenue-neutral
for almost everyone. See http://home.nyc.gov/html/tlc/downloads/pdf/newly_passed_rules_

leasecap_updates.pdf.
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operate by street hailing.13 Furthermore, medallion taxis have a monopoly over street-

hailing customers in Manhattan and at the airports (see Figure A6 for a map of the

relevant restricted zones).

Fares are regulated by the TLC. There was no fare variation during the sample

period, with the last change being enacted in September 2012. The regular fare follows

a two-part pricing scheme, with the fare starting at $3 (including the NY State tax

surcharge) and increasing by $0.50 for every 0.2 miles traveled or each minute the cab

is stationary.14 There is also a flat fare of $52 for trips between Manhattan and JFK

Airport. Because the fare is fixed, variations in average hourly earnings in the market

mostly come from shorter or longer search times.

The airport taxi market is important but should be treated differently from regular

street hailing as it is the only place in NYC where taxi stands truly allow a driver to

take a break. That is, while a long queue of taxis would require the driver to stay in

the vehicle to move forward slowly, in contrast, an airport taxi stand allows the driver

to step out of the car and use facilities there while retaining his position in the queue.15

The transaction-level data used in this study originate from the Taxicab Passenger

Enhancement Project (TPEP), spearheaded by the TLC. I use data from January to

December 2013. By 2008, all NYC taxicabs were equipped with a digital system that

records detailed information about each trip. This replaced hand-written logs used by

the first generation of studies examining the labor supply of taxi drivers.

13Since the end of 2013, the taxi environment in NYC has changed considerably. In mid-2013, the
TLC started a pilot program for an E-Hail smartphone-based application to improve the matching.
This pilot was negligible in 2013 and accounted for 0.25 percent of all yellow cab pickups between June
and November 2013 (see http://www.nyc.gov/html/tlc/downloads/pdf/ehail_q2_report_final.

pdf). Another type of taxi, called the Boro taxi, made its debut in 2013. It is possible that taxi drivers
changed their strategy following the introduction of Boro taxis. However, Boro taxis are not allowed to
compete with yellow medallion taxis in Manhattan and at the airports, where 93.8% of all yellow taxi
pickups originate (Taxi and Limousine Commission, 2014).

14There are also night surcharges and peak hour weekday surcharges of $0.50 and $1, respectively.
15The taxi airport holding areas are parking lots comprised of many lanes. The queue starts by

filling the first lane. When it is filled, a second lane is opened and taxis start queuing. This process
repeats with many more lanes. When customers requests taxis, the first lane advances until the lane is
empty. During that time, vehicles in other lanes stay put. This general arrangement allows the drivers
to use the onsite facilities: small restaurant, bathrooms, praying areas, etc.
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3.2 The TPEP data

The TPEP dataset contains an entry for each of the 173 million taxi trips made during

2013. It contains unique identifiers for the driver and the vehicle, information regarding

the date, time, and precise GPS location of both the pickup and dropoff, and detailed

information about the regular fare, surcharges, tolls, and tips paid by credit card. All

data are stored electronically and sent automatically to the TLC.

In contrast to many datasets used by labor economists, the TPEP dataset was not

created with the goal of conducting research. Most importantly, the dataset does not

contain information about what would be called a ‘shift.’ If the raw data are grouped

by drivers, what we see are many transactions, separated by periods of inactivity. It

will be helpful to characterize these periods of inactivity into three categories, from

shorter to longer: customer search, breaks, and ‘time off work.’

I follow Farber (2015) and define a period of ‘time off work’ as any gap of more than

six hours between two trips. This allows me to construct work shifts as all consecutive

trips made by a driver between two periods of time off work.

An interesting feature of the New York City taxi industry is the ‘2-shift rule.’

Specifically, the TLC forces the majority of medallions to be operated during two shifts

per day. As will be explained in more detail in Section 5, I use the fact that almost

all rental agreements between taxi fleets and drivers start or end at 5 AM or 5 PM.

The day shift is consequently defined as starting at 5 AM and ending at 5 PM and the

night shift starting at 5 PM and ending at 5 AM. In the estimation, I focus on drivers

whose behavior during the year indicates that they follow the day-shift or night-shift

schedule. The daily labor supply decision then becomes a finite-horizon problem where

the driver is forced to end his shift at either 5 PM (day shift) or 5 AM (night shift).16

In Figure A2, I show the distribution of end time of the shift. Two patterns emerge:

first, most drivers in the sample respect the end time, although they sometimes spillover

into the next driver’s rental period; second, the end of the night shift is much more

dispersed than the day shift, where most drivers finish their shift close to the end of

the rental period.

16See Fréchette et al. (2018) for a more detailed explanation of the phenomenon. They argue that
the reason for the 5 PM transition time is to make day and night shifts equally attractive to drivers in
terms of accumulated earnings.
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3.3 Identifying breaks

As breaks are the primary focus of this study, it is important to define breaks in a

way that minimizes the misclassification of breaks into customer search time (and vice

versa). Previous studies have defined breaks using thresholds that depend only on the

location of the pickup and dropoff.17 That methodology raises three important issues:

First, market conditions and misclassification errors will be correlated. Second, a fixed

threshold does not account for long return trips. Third, waiting for a customer in the

airport queue is a break. I take these in turn, in the process setting out the algorithm I

develop.

3.3.1 Market Conditions

The first reason why using a fixed threshold to define a break is problematic comes

from the correlation between market conditions and misclassification errors. To see

why, imagine a taxi driver in a busy area in Manhattan’s financial district at 4 PM on

a weekday. The probability of misclassifying a 30-minute customer search time as a

break is very low, given the average search time at 4 PM in that location is well below

five minutes. However, at 4 AM in the same location, the average search time is much

higher, and the probability of misclassifying a 30-minute customer search time as a

break is therefore also much higher.

To address this issue, I compute the average search time for each location during

each hour of the week. I compute the mean search time using only observations for

which the last dropoff and the next pickup occur in the same region. The resulting

search time in Manhattan is mapped in Figure 1 for Tuesday at 4 AM and Tuesday at

4 PM. There is a clear pattern, where the search time is generally much longer at the

end of the night.

The threshold to classify a break will then depend on this measure of average search

time. In areas where the mean search time is higher, a longer period of inactivity will

be required to define a break. I multiply the search time by 1.5 so that a period of

inactivity slightly longer than the mean search time is not considered to be a break. I

17For instance, Farber (2005) defines a break as a 30-minute period between two trips within
Manhattan, a 120-minute period between any trip and a trip that started at Laguardia or JFK Airport,
and a 60-minute period between all other trips not covered by the first two rules. Thakral and Tô
(2017) use similar thresholds.
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Figure 1: Average Search Time in Manhattan

Tuesday 4 AM Tuesday 1 PM

2

4

6

8

10

12

14

Notes: The average search time (in minutes) in each region is computed using only observations
for which the last dropoff and the next pickup are in the same region. Each region is a
‘community board.’ See Section A.3 for further explanations.

also set the minimum time to classify inactivity as a break to be 20 minutes.

3.3.2 Airport Breaks

Farber (2005) and Thakral and Tô (2017) define breaks at airports to have the longest

threshold and they consider waiting in the airport queue to not be a break. In July

2018, I conducted informal interviews with taxi drivers, sixteen of whom were located at

the Laguardia Airport taxi hold at the time of the interview. All of them indicated that

they considered the queuing time there as a break. Based on this evidence, I consider

time waiting in an airport queue as a break, and consequently set the average search

time to zero in the area of Laguardia and JFK Airport.18

3.3.3 Driving Time

Another issue with the fixed threshold methodology relates to controlling for the driving

time between the last dropoff and the next pickup. While previous studies used a longer

18See Figure A6 for a map of the neighborhoods of NYC. The two airports have their own ‘neighbor-
hood.’
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threshold when the wait time originated or ended outside of Manhattan, the TPEP

data contains the pickup and dropoff coordinates of each trip, giving one the ability to

control for driving time with much more precision.

Specifically, I compute the driving distance and duration between each dropoff and

pickup using a shortest path algorithm.19 While it is possible that the driver did not

take the shortest path, this will lead to a better approximation for the true duration of

inactivity.

3.4 Rule to Determine Breaks

Bringing all the above considerations together, I first compute the duration of inactivity

between two trips net of the driving time. More formally, the duration of inactivity

before trip m is computed as the number of minutes separating the dropoff of trip

m − 1 and the pickup of trip m, net of the optimal driving time between the two

locations. Denote this measure of duration of inactivity before trip m by κm. This value

is compared to the threshold, a function of the mean search time (slc) in location l

during hour c. I parametrize this function as the maximum of either 1.5 times the mean

search time in the location or 20 minutes.20 I classify the time between trip m− 1 and

m as a break if and only if:

κm > max(20, 1.5slh).

This rule is applied to all 170 million periods between two consecutive trips from

the same driver. Using the above rule, 12.4 percent of periods within shifts are spent

on break, which amount to slightly over one hour of break per 9-hour shift.

19I used the Open Source Routing Machine to compute the distance and duration for the 170 million
trips. I used data from OpenStreetMap to construct the road network surrounding NYC.

20The ‘max’ function translates into a minimum threshold of 20 minutes for a break, and serves
as a way to avoid overclassifying wait times as break during peak hours of the day. Indeed, during
the middle of the day, the mean search time in Manhattan is often lower than 5 minutes, and would
generate a threshold value of 7.5 minutes, a break duration that would be too short to reduce fatigue
for taxi drivers.
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3.5 Constructing the Labor Supply Decisions

Before detailing how I reconstruct the labor supply decision, it is important to clarify

what constitutes a period. Medallion taxis in NYC are mostly used for very short trips:

the median trip duration is 10 minutes and 95 percent of all trips take fewer than 30

minutes. This motivates the use of relatively short periods to model the decision horizon

of drivers. In what follows, I define periods as blocks of 30 minutes.21

From the transaction-level data, I reconstruct the sequence of labor supply decisions

of each driver in my sample. The start of the shift is defined as the pickup time of the

first customer. Then, at each subsequent 30-minute mark, I record what the driver’s

main activity will be during the following 30-minute period. If there is no break and

the shift has not ended, I assume the driver has decided to continue working. If a break

occurs in the first 15 minutes of the period, I consider that the driver decided to take

a break. Finally, if the last dropoff of a shift occurs within the first 10 minutes of a

period, I designate the labor supply decision in that period to be ‘ending the shift.’

Otherwise, the next period will be considered to be the end of the shift.

A simple illustration from an actual shift of a randomly chosen driver is shown in

Figure 2. The first row represents what can be directly observed in the raw data. Each

rectangle represents a trip. Then the second row shows what can be inferred from the

data: the hatched sections are breaks, identified using the rule proposed in the previous

subsection, and the outline represents the inferred shift start and end times. The last

row presents the resulting sequence of labor supply decisions, made each 30-minute

period.

3.6 Market Hourly Earnings

As stated earlier, hourly earnings in the taxi industry are determined in large part

by the search time required to find a customer: the lower the search time, the higher

the hourly earnings. In the following empirical framework, I define the market hourly

earnings (or potential earnings) as the average earnings per hour averaged over all

21As noted above, many previous papers model a period as being one taxi fare (e.g. Farber, 2005,
2008b; Crawford and Meng, 2011; Thakral and Tô, 2017; Buchholz et al., 2018). In a way, this
assumption is natural for taxi drivers as the decision to stop or end a shift can be taken at the end of
each fare. However, using this definition, a period is only defined when the taxi driver is working. This
becomes problematic when we want to study non-terminal actions (e.g. rest breaks), as in the current
analysis.
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Figure 2: Construction of the Data

 6 AM  8 AM 10 AM 12 PM  2 PM  4 PM
Time

Constructed

Finding Breaks

Raw Data

fare / work break end shift

Notes: This figure illustrates the transformations made to the raw data to infer labor supply
decisions. The ‘Raw Data’ row represents raw transactions for a driver in the sample. There
are no other trips made by this driver in the 6 hours before or after any trips shown here.
The ‘Finding Breaks’ row adds the hatched portions where I identify rest breaks. Finally, the
‘Constructed’ row shows the resulting sequence of labor supply decisions for every 30-minute
period.

drivers.

Conceptually, the method I use to compute the market hourly earnings is simple.

For each trip, I compute its revenue per hour by dividing the total fare received by the

amount of time spent searching for the customer and spent on the trip.22 To get the

market hourly earnings at a given moment, I take the average revenue per hour of all

trips that where active (searching or driving to the destination) at that point in time.

3.7 Sample Selection

I restrict the sample in several ways to reduce measurement error. First, I only look

at drivers who drove 90 percent of the time within the day shift or the night shift.

Furthermore, I restrict the analysis to Monday through Thursday because labor supply

patterns across those days are very similar, and I select drivers with more than 75

Monday through Thursday shifts during the year. I also drop irregular shifts with

durations below 3 hours or over 12 hours.

To show why I selected shifts from Monday to Thursday, Figure 3 plots the Pearson’s

correlation coefficient between the time series of market wages per minute during each

22For example, suppose a driver searches for his next customer for 10 minutes, spends 20 minutes
getting to the customer’s destination, and receives a fare of $20. Then, this trip has a revenue per hour
of $40. See A.2 for more details.
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Figure 3: Correlations Across Weekdays in Hourly Earnings Variations
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Notes: This heatmap shows the Pearson’s correlation coefficient between average market
hourly earnings for each minute of the day, across each day of the week. The top right cell,
for example, shows the correlation coefficient between the sequence of hourly earnings on
Monday and Sunday. The methodology to compute the market hourly earnings is detailed
in Section A.2. I count the first 5 hours of a day (from midnight to 5 AM) as belonging to
the previous day because drivers working during those hours are on the previous day’s shift.

day of the week. We can clearly see a very high correlation during the first four days of

the week. Including Friday, Saturday, or Sunday in the analysis would require that we

add another level of fixed effects, which would be computationally expensive.

Summary statistics for the resulting shifts are shown in Table A1. There, we observe

patterns that are consistent with the selection rules: selected drivers, based on the

criteria just described, are earning less per shift than the remaining drivers. The first

reason is that they work shorter shifts because they are restricted by the 12-hour limit.

The second reason is that they face lower hourly earnings. This can be explained by the

fact that owner-drivers are usually much more experienced than rental drivers. Selected

drivers also work more shifts per year because I select only the drivers with enough

observations to estimate the model consistently.
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4 Descriptive Evidence

In this section, I document four patterns related to breaks that can be found in the data.

These patterns motivate the major features of the model: allowing heterogeneity across

drivers, the duration dependence of breaks, forward-looking behaviors, and opportunity

costs affecting the decision to take a break.

4.1 Heterogeneity across drivers

A central issue with dynamic discrete choice models is the presence of unobserved

heterogeneity. Previous studies have already documented significant heterogeneity

across taxi drivers. Farber (2015), also using the TPEP dataset, estimates a labor

supply elasticity for each individual driver. He finds substantial variation across drivers

in estimated labor supply elasticities, ranging from well into negative territory to more

than 0.75. In a different setting, Mas and Pallais (2017) also find considerable evidence

of heterogeneity in valuations, and caution researchers that any analysis that ignores

heterogeneity will potentially lead to misleading conclusions.

As a starting point when accounting for this heterogeneity in my analysis, I present

distributions of summary statistics across drivers in Figure 4. Each panel shows the

distribution of annual averages over drivers: Figure 4(a) shows the distribution of

average shift duration; Figure 4(b) shows the distribution of hours spent on breaks

during a shift; Figure 4(c) shows the distribution of average duration of uninterrupted

work (i.e. the frequency of breaks); and Figure 4(d) shows the average number of pickups

from either Laguardia or JFK Airport per shift. A significant amount of heterogeneity

in all dimensions of labor supply is apparent.

To explore whether this heterogeneity can simply be explained by statistical ran-

domness, I conduct a simple thought experiment: if hours on break per shift were drawn

from the same distribution for all drivers (i.e. there was no heterogeneity across drivers),

then only about 5 percent of all drivers should be statistically different (at the 5% level)

from the average driver. Instead, the data indicate that the mean driver (in terms of

time on break) is statistically different from 66.3 percent of all other drivers.

It is possible that heterogeneity is present in other dimensions. In Table A2, I

perform a variance decomposition exercise, finding that differences across weeks of

the year (capturing seasonality effects) can only explain between 0.3 percent to 2.1
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Figure 4: Distributions of Annual Means Across Drivers
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Notes: To construct these distributions, I first obtain the mean of the selected statistic for
each driver. Then I plot the resulting distributions of these averages. The PDFs are estimated
using a non-parametric kernel density estimation technique with a Gaussian kernel.

percent of all heterogeneity in the statistics presented in Figure 4. Similarly, differences

across weekdays only explain 0.5 percent to 3.9 percent of the heterogeneity. In contrast,

between 20.2 percent and 38.7 percent of heterogeneity can be explained by differences

across drivers. This supports the decision to focus on heterogeneity across drivers while

abstracting from seasonality effects.

4.2 Duration Dependence of Breaks

In this subsection, I present descriptive evidence showing that breaks exhibit positive

duration dependence, a feature that supports the presence of fatigue in the decision to

take a break. In contrast, a model with random breaks (due, for example, to idiosyncratic

utility shocks) would have no duration dependence: there is a constant arrival rate of
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shocks that create a break. The properties of models with duration dependence have

been studied extensively in the literature examining unemployment spells. In the current

context, instead of looking at the relationship between the job-finding probability and

the duration of the unemployment spell, I look at the probability of taking a break with

respect to the duration of a continuous work ‘spell.’ In this case, the data would exhibit

positive duration dependence when the probability of the event (a break) increased

with the spell duration.

Duration dependence is represented graphically in Figure 5, where the hazard

function of taking a break is plotted for different cases. The dashed line represents a

world where breaks have a constant arrival rate and no driver heterogeneity exists. The

dashed line is flat because the probability of taking a break does not depend on the

duration of continuous work.

The above discussion compares the data to a case where breaks arrive at a constant

rate throughout the day and the arrival rate is common to all drivers. The previous

discussion relating to the presence of heterogeneity across drivers makes it clear that

the data reject this assumption. When relaxing the assumption that the rate is common

to all drivers, it is well known that unobserved heterogeneity affects the shape of the

hazard function seen in aggregate data (Baker and Melino, 2000; Van Den Berg, 2001).

As shown by the dotted line of Figure 5, the resulting slope of the hazard function will

be negative, even with no duration dependence.23 Therefore, unobserved heterogeneity

would bias the result toward finding negative duration dependence.

In contrast, the solid line illustrates the hazard function estimated from the data,

showing that taking a break is a process that exhibits clear positive duration dependence.

While a random component is still most likely present, positive duration dependence

suggests that worker fatigue plays a role in the decision to take a break. For example, a

driver is more likely to take a break after five hours of continuous work than after one

hour because the accumulation of fatigue has decreased the net utility of continuing to

work.

23Intuitively, the reason for this decreasing hazard function is that individuals with a low probability
of taking a break represent a larger fraction of drivers who have worked continuously for a longer
period of time.
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Figure 5: Hazard Function of Breaks
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Notes: The hazard function of a break under the hypothesis of no duration dependence and
heterogeneity assumes that there are two equal-sized groups of drivers. The first group takes
a break each period with a probability of 5 percent while the second group does so with a
probability of 13 percent.

4.3 Forward-looking behavior

The hazard function of taking a break is helpful not only for showing that fatigue is

likely to play a role in the break decision, but also to demonstrate that drivers are

forward-looking within the day. Indeed, if drivers were not forward-looking, then the

end of the taxi rental period should not be correlated with a reduction in the probability

of taking a break in previous periods. This is because, as a driver approaches the end of

a shift, the utility of taking a break decreases since its fatigue-reducing benefits would

have an impact on only a relatively short period of time.

Figure 6 shows the hazard function associated with starting a break but this time

with respect to time until the end of the taxi rental period. Notice here that the ‘0’ on

the horizontal axis represents the end of a shift. We can observe a steadily decreasing

probability of taking a break as we get closer to the end of the rental period (moving

from right to left).24 This suggests that drivers are forward-looking whereby they make

24Only shifts where the driver worked until the end of the rental period are included here because
the decision to end could lead to a similar pattern without forward-looking preferences.
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Figure 6: Probability of Taking a Break at the End of Shift
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Notes: Only the drivers who worked until the end of their rental period are included in this
figure.

their decisions incorporating the continuation value, which depends on the terminal

period. If they did not expect their shift to end, their probability of taking a break

would be constant.

While forward-looking behavior can explain the pattern observed in Figure 6, other

explanations cannot be ruled out by this simple reduced-form exercise. Time until

the end of the rental period is highly correlated with the hour-of-the-day fixed effects,

for instance. These confounding factors will be accounted for in the structural model

presented in the next section.

4.4 Opportunity cost

Simple economic intuition tells us that drivers should be responsive to pecuniary

incentives: If the potential earnings are high, taking a break will be costly. Conversely,

in times of low demand and low potential earnings, it would be efficient for drivers

to take a break. The extent to which drivers respond to pecuniary incentives in their

decision to take a break is unclear.

As a simple test, Figure A3 shows the probability of taking a break in $1 increments

of a period’s deviation from usual potential earnings (i.e. the market hourly earnings).

As expected, we see a negative correlation, indicating that drivers are more likely to

take a break when earnings are low. This suggests that potential earnings during the
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Table 1: Estimates of Labor Supply Elasticity (2SLS)

All Day Shift Night Shift Owner

(1) (2) (3) (4)

Panel A: Gross shift
log Hourly Earnings 0.256∗∗∗ 0.071∗∗∗ 0.438∗∗∗ 0.463∗∗∗

(0.004) (0.004) (0.006) (0.015)

Panel B: Adjusted shift (net of breaks)
log Hourly Earnings 0.821∗∗∗ 0.624∗∗∗ 1.098∗∗∗ 1.216∗∗∗

(0.007) (0.009) (0.011) (0.032)

Controls Yes Yes Yes Yes
Observations 4,894,002 2,148,223 2,151,782 566,344

Notes: Clustered standard errors in parentheses (driver-level). Controls include weather
(temperature and precipitation), location fixed effects (modal pickup neighborhood – 72),
holiday fixed effects (9), and fixed effects for the month of the year (11) and the hour of the
week (167).

period are a factor in the decision to take a break.

Many studies focus on estimating the daily labor supply elasticity. I replicate the

methodology of Camerer et al. (1997) to assess how much the elasticity would change

if we account for breaks not as a control variable, but in the measure of labor supply

itself. Define the ‘gross’ labor supply as the time between the start and end of a shift.

Then ‘adjusted’ labor supply can be defined as the ‘gross’ labor supply net of all breaks

taken during the shift. If breaks occur randomly and are not correlated with potential

earnings, we should observe the same labor supply elasticity for both measures of labor

supply.

Table 1 shows the estimated labor supply elasticities (the details of the regression,

the variables, and the instrument for hourly earnings are explained in Appendix B). In

Panel A, the labor supply elasticities are estimated using the gross measure of labor

supply. When I use the adjusted measure of labor supply in Panel B, the elasticities

become significantly higher. This is intuitive: some drivers use breaks as a margin of

labor supply adjustment since lower potential earnings reduce the opportunity cost of

taking a break.
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5 A Labor Supply Model with Breaks

In this section, I set out the model of daily labor supply with discretionary breaks. The

model reflects the flexible environment taxi drivers operate in by letting the drivers

make labor supply decisions along two dimensions: taking breaks and ending the shift.

This can be formulated using a standard dynamic discrete choice framework.

5.1 Fatigue

There is a general consensus in the literature that rest breaks during the workday

reduce fatigue (Tucker, 2003; Jett and George, 2003; Hideg and Trougakos, 2009). In

the model I now outline, I define fatigue as the net effect of all duration-dependent

processes affecting utility during the day. For instance, the need to eat or go to the

bathroom are examples of duration-dependent processes with an associated disutility

that grows over time. I will use ‘fatigue’ as an umbrella term to simplify the discussion.

The way I parametrize fatigue captures two crucial features of resource depletion

and recovery over the workday. First, breaks serve as a recovery mechanism and lead to

a reduction in accumulated fatigue. Second, sleep is crucial to completely recuperate

from a workday. This also means that we expect the fatigue level of a worker to be

higher later in the day (compared to earlier), even if the worker is just back from a

break. To model those two features, I define fatigue accordingly as the sum of two

components: recoverable fatigue and non-recoverable fatigue.

In the following subsection and in the estimation, non-recoverable fatigue enters

utility as a function of the accumulated hours on shift (ht), where time is denominated

in the number of 30-minute periods. Recoverable fatigue is defined as a function of

the duration of uninterrupted work (dwt ), again denominated in number of 30-minute

periods. In terms of their parametrization, I assume these two components have a linear

and additively separable effect such that the total cost of fatigue is πnht + πrd
w
t , where

πn and πr indicate the speed at which fatigue accumulates.

In the model, breaks are assumed to reset recoverable fatigue, but have no effect

on non-recoverable fatigue. Following the literature on resource recovery, I make the

strong assumption that any breaks of at least 30 minutes eliminate recoverable fatigue

completely. In contrast, the only way to reduce non-recoverable fatigue is to end one’s

shift.
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Figure 7: Graphical Representation of the Fatigue Process
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As shown in Section 4, the probability of taking a break increases with the time

since the last break. It is useful to understand the fatigue process through the lens of

Figure 7. Parameters πn and πr inform us as to the nature of the fatigue process. The

larger they are, the more quickly total fatigue accumulates.

5.2 Per-Period Utility

Given the above treatment of fatigue, I now define the utility function of the agents. In

dynamic discrete choice models, the agent derives utility each period, utility depending

on the value of the state variables as well as the action taken by the agent. While forward-

looking agents seek to maximize more than just their utility in the current period,

understanding the factors that influences per-period utility is key to understanding the

intuition behind the main parameters and how they affect the driver’s decision.

Formally, an agent derives per-period (flow) utility, which depends on his action

(at ∈ (w)ork, (b)reak, (e)nd shift) as well as the state space (xt). Taking these actions

in turn, when the agent works, his flow utility is characterized by the expected earnings

to be made during that period (It), as well as the disutility from fatigue. The utility

when the agent works (at = w) is given by

ut(at, xt|at = w) = γIt − πnht − πrdwt + αw
c + εwt ,

where αw
c is an intercept that varies with the hour-of-the-day (clock time). It can capture
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the fact that working is less pleasant at certain times of the day (e.g. rush hour); it can

also be viewed as an hour-of-the-day fixed effect. In the estimation, it is treated as a

nuisance parameter. The error term εwt is an idiosyncratic utility shock. For tractability,

I make the assumption that all idiosyncratic utility shocks follow an extreme value type

I distribution. This is the logit assumption and is standard in the dynamic discrete

choice literature.25

The contribution of earnings to utility is represented by γIt. In the estimation,

I use the average hourly wage in period t across all drivers as a measure of It. For

computational purposes, I discretize It into eight bins, each of which has a width of $1

per 30-minute period, and is expressed in terms of deviations from the mean. To be more

precise about the evolution of potential earnings, it is possible to decompose it into four

separate components: (a) the hourly market earnings, (b) the average deviation from

the hourly market earnings, (c) driver-specific productivity, and (d) a driver-specific

idiosyncratic shock. In this model, the hourly market earnings and the driver-specific

productivity (a and c) are captured by the hour-of-the-day fixed effects. I assume that

the driver-specific idiosyncratic shock (component d) is i.i.d. and that the drivers are

not able to predict this, making it irrelevant for the decision they make at the start of

the period. Potential earnings (It) are then normalized to represent the deviation from

usual hourly market earnings (component b).

The utility when the agent chooses a break (at = b) is

ut(at, xt|at = b) = −τ · 1[at−1 6= b]− ψdbt + αb
c + εbt .

At the start of a break, the agent incurs a fixed cost (τ). The duration of the break is

denoted by dbt . The term ψdbt captures the idea that breaks have decreasing marginal

utility, so the utility of a two-hour break is not double the utility of a one-hour break.

In addition, the utility from rest breaks also contains an intercept that varies with the

time of the day (αb
c) and an idiosyncratic utility shock (εbt). The hour-of-the-day fixed

effect for breaks represents the fact that workers may have preferences across hours of

the day for taking breaks (e.g. having lunch at the same time every day).

Finally, the value of ending the shift (at = e) is normalized to 0 plus an idiosyncratic

25Using similar data, Buchholz et al. (2018) relax this assumption in a simpler model that only
tracks the decision to end a shift. Relaxing the logit assumption in dynamic models with breaks is left
for future research.
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utility shock. Putting everything together, per-period utility is then:

ut(at, xt) =


γIt − πnht − πrdwt + αw

c + εwt if at = w;

−τ · 1[at−1 6= b]− ψdbt + αb
c + εbt if at = b;

εet if at = e.

(1)

The vector of state variables, xt, consists of: It, ht, d
w
t , dbt , at−1, and the clock time

c. It is also useful to define εt ≡ (εwt , ε
b
t , ε

e
t), as well as the vector of parameters

θ ≡ (γ, πn, πr, τ, ψ, α
w, αb, θf ), where θf is the set of parameters capturing the evolution

of the state space, discussed next.

5.3 Evolution of the State Space

The agents’ beliefs about the future are an essential component of the model. Intuitively,

because the utility in future periods is part of the optimization problem, a rational

agent must keep track of the evolution of the state space. In the problem outlined

here, only potential earnings are stochastic and carry some uncertainty concerning their

evolution.

Recall that It is a discretized measure of the market’s deviation from usual earnings

in the period. I model the law of motion of It as a Markov process that can be represented

using an 8× 8 transition matrix (θf ). The elements of θf are parameters of the model

and are assumed to be identical across drivers (i.e. all drivers have the same expectation

about the evolution of potential earnings).

The other laws of motion in this model are deterministic. The hour of the day follows

the clock cycle. The accumulated hours on shift (ht) and the durations of uninterrupted

work and breaks (dwt and dbt) follow the laws of motion:

ht+1 = ht + 1

dwt+1 =

dwt + 1, if at = w,

0, otherwise.

dbt+1 =

dbt + 1, if at = b,

0, otherwise.
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The fact that these variables evolve in a deterministic fashion is the key to the

computational efficiency of the estimation technique and a central reason for why the

model can be estimated separately for each driver in a reasonable amount of time.

5.4 Forward-looking value function

Agents in this model are forward-looking during the day, as stated earlier. This implies

that when deciding their action at the beginning of each period, their objective is to

maximize the utility of the current and future periods within the shift, stopping at most

at the end of their rental period.

The agent’s problem is then to choose at to maximize the discounted sum of future

flow utilities:

max
at

[
u(at, xt, εt) + E

(
T∑

t′=t+1

βt′−t [u(xt′ , at′ , εt′)]

)]
.

This is a standard dynamic programming problem. It can be written in a recursive form

with the ex-ante value function V̄t(xt):

V̄t(xt) = max
at

u(at, xt, εt) + β

∫
V̄t+1(xt+1)f(xt+1|at, xt)dxt+1.

In the above recursive representation, f(xt+1|at, xt) is the transition function and

maps the probability of going from the current state xt to xt+1, given action at. The

value of the state variables depends only on the last period’s value and the last period’s

decision. It is helpful to define the conditional value function vt(at, xt)—also called

the choice-specific value function—as the present discounted value of choosing at and

behaving optimally in the following periods:

vt(at, xt) = ũ(at, xt) + β

∫
V̄t+1(xt+1)f(xt+1|at, xt)dxt+1, (2)

where ũ is defined as the utility net of the error terms. The problem becomes very

similar to a static conditional logit model in which the agent maximizes vt instead

of ut. Among the options available, the agent chooses the option yielding the highest

forward-looking utility. The researcher does not know what the error term is, but makes
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an assumption about its distribution. Then, for a given set of parameters θ, we can

compute the conditional choice probability p(at|xt, θ)—the probability that an action is

taken given the current values of the state space. This conditional choice probability is

the central object of the estimation strategy.

A large literature studies at the identification of dynamic discrete choice models (e.g.

Rust, 1994; Magnac and Thesmar, 2002). The discount factor (β) is known from the

literature to be non-parametrically unidentified. While the choice of discount factor is

an important modeling decision when the time horizon of the forward-looking decision

is long, it is less of an issue for within-day applications. Because my periods have a

duration of 30 minutes, even a discount factor of 0.99 translates to an implausibly large

annual discount rate.26 I follow Fréchette et al. (2018) and set β = 1, assuming there is

no discounting within a shift.

To summarize, in this section, I have set out a dynamic model of daily labor

supply with discretionary rest breaks. The model features several components affecting

the decision to take a break. First, breaks allow the worker to reduce accumulated

fatigue through its recoverable component (dwt ). Second, breaks offer higher utility at

certain hours of the day because of differences in the taste for breaks across hours

(e.g. lunchtime) or differences in average hourly earnings, through αw
c and αb

c. Third,

demand shocks affect expected earnings and modify the opportunity cost of a break.

Other factors influencing the decision to take a break are then included in the random

utility shocks (error terms).

6 Estimation

The estimation of this dynamic discrete choice model is carried out by maximum

likelihood. The central parts of the log-likelihood function are the conditional choice

probabilities, p(at|xt). In this section, I first describe the log-likelihood. Then I discuss

intuitively how one might think of the identification of each parameter and describe

how heterogeneity is handled. Finally, I present the estimates and describe how well

the model fits the data.

26The results presented in the following section are not sensitive to changing the discount factor to
take on any value between 0.95 and 1.
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6.1 Estimation Strategy

Define the probability of choosing an action given a realization of the state space by

pt(at|xt). According to the model, this will be equal to the probability that action a is

the optimal action at time t. Assuming that the idiosyncratic utility shocks follow a

type I extreme value distribution, the probability of an arbitrary choice at is given by

pt(at|xt) =
exp [vt(xt, at)]∑
a′t

exp [vt(xt, a′t)]
. (3)

The above conditional choice probability is essential to the estimation strategy, with

the maximum likelihood function being comprised of each observation’s conditional

choice probability associated with the realized action.

The maximum likelihood function is formed by calculating the probabilities of the

observed actions in the data. Specifically, the log-likelihood function is

l(θ) =
T∑
t=0

N∑
n=0

(ln [pt(ant|xnt, θ)] + ln [f(xnt+1|xnt, ant, θf )]) .

For each period and each agent, the likelihood can be factored into two pieces: the

conditional choice probability and the transition density function.

Because θf only enters the second part of the likelihood, it can be obtained indepen-

dently in a first step. Although this is not as efficient as estimating everything jointly, it

greatly reduces the computational cost. This first step is carried out nonparametrically

using a simple bin estimator (based on empirical frequencies):

f(xt+1|xt, at) =

∑N
n=1

∑T
t′=1 1(xnt′+1 = xt+1, xnt′ = xt)∑N
n=1

∑T
t′=1 1(xnt′ = xt)

.

Taking the estimate of θf as given, I then estimate the model using a finite-horizon

version of the nested fixed point algorithm developed in Rust (1987). This technique

is known to be computationally intensive because the agent’s problem needs to be

solved at every iteration of the likelihood optimization algorithm, hence the ‘nested’

structure of the problem. First, for a given draw of the utility parameters, the algorithm

solves the agent’s problem by backward induction. During the last 30 minutes of the

rental period, the agent knows that he is forced to end the shift. Thus, regardless of
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his action choice, the continuation value will be the same. In other words, at t = T ,

the forward-looking value function is equivalent to the static utility function (vT = uT ).

Using this feature, we can compute the value function at the preceding period (vT−1).

Iterating this process allow us to recover the value function at every period of the shift.

Once vt is recovered, the estimation is identical to a static conditional logit model.

I make the assumption that the error terms are drawn from an extreme value type I

distribution, generating the closed form solution in Equation (3) for the conditional

choice probabilities. Standard maximum likelihood optimization techniques can be used

to iterate over different draws of the parameter, until convergence.

The identification of each parameter can be understood intuitively from the respective

sources of identifying variation. First, the coefficient on hourly earnings (γ) is identified

from unexpected variation in potential earnings. Following the literature (see e.g. Farber,

2015), I assume that the hour-of-the-day fixed effect captures all expected variation

in potential earnings. I estimate the model with shifts from Monday to Thursday

to avoid the need to include day-of-the-week fixed effects, since this would be too

computationally costly. On this point, Fréchette et al. (2018) find that shifts on Monday

through Thursday are very similar, suggesting that the identification of parameters

does not originate from variation across weekdays.

The parameters governing the cost of fatigue (πr and πn) captures most of the

duration dependence embodied in the model. The parameter of recoverable fatigue (πr)

can be understood graphically from Figure 5. Positive duration dependence imply that

the probability of taking a break increases as the duration of uninterrupted work increase.

This would translate into a positive coefficient, and the magnitudes are identified out

of the slope of the change in the probability of taking a break. The parameter of

non-recoverable fatigue, is identified similarly with the difference in the probability

of ending the shift at different shift duration. Intuitively, if we see a driver starting

a shift at 6 AM and another otherwise similar shift at 10 AM, the cost of fatigue

will be identified out of the fact that at a given hour, the level of recoverable and

non-recoverable fatigue will be different and lead to different probability of taking a

break.

The parameter governing the rate of breaks utility decline (ψ) is identified out of

the duration dependence of breaks. If the probability of ending a break is constant with

respect to the duration of the break, this would indicate that ψ = 0. However, if the
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utility of an additional period of break is lower as the total length of a break increases,

then ψ will be identified out of the speed at which marginal utility of a break decreases.

The fixed cost of taking a break (τ) is identified out of the frequency of switching

between work and break. Keeping the number of periods on break a driver takes, a

large fixed cost would translate into an individual that bunches his periods on breaks

in one large break. In contrast, an individual that switches frequently between work

and break would have a low fixed cost.

Finally, the hour-of-the-day fixed effects (αw
c and αb

c) are constraining all previous

parameters to be identified within the same hour. Indeed, the linear fixed effects will

remove the average conditional choice probability of each action for a given hour of

the day. Notice that the identification of all the above parameters does not necessitate

multiple drivers, only multiple work shifts. This will be important for the next subsection

where I explain how the estimation strategy accounts for unobserved heterogeneity

across drivers.

6.2 Unobserved Heterogeneity

The model presented in Section 5 and the estimation strategy described in this section

do not distinguish between data from one driver or thousands of them. As stated by

Aguirregabiria and Mira (2010), “in microeconomic applications of single-agent models,

we typically have that N is large and Ti is small,” where N is the number of agents

and Ti is the number of periods the researcher observes agent i. This is not the case

in the current application: in both dimensions, the number of observations is large. It

is possible to see the data as having a completely new dimension: the shift. For each

driver, N can be thought of as the number of shifts and Tj as the number of periods

for shift j, where we see the agent’s detailed period-by-period labor supply decisions.

Using the richness of the data, I handle unobserved heterogeneity in possibly the most

flexible way: the model is estimated independently for each driver. This is more flexible

than using a fixed effects model because heterogeneity is allowed to enter non-linearly in

each parameter. In most applications of dynamic discrete choice models, the preferred

method to account for unobserved heterogeneity is to use finite mixture distributions

(Arcidiacono and Jones, 2003; Arcidiacono and Miller, 2011). One major limitation of

that estimation strategy is that increasing the number of ‘types’ is computationally
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prohibitive. In fact, most applications typically use fewer than 10 types. In contrast, I

allow each taxi driver to have his own type. The resulting heterogeneity is therefore

non-parametrically identified.

The interpretation of such heterogeneity is also intuitive. Because of genetic reasons

or age, for example, some individuals may have better recuperation capabilities than

others. Therefore, their values of πn and πr can vary. Similarly, the fixed cost of taking

a break (τ) can differ across individuals. I also allow hour-of-the-day preferences to

vary from driver to driver. This is necessary if we believe, for instance, that drivers are

heterogeneous in their taste for when to take lunch or if some of them have stronger

distaste for rush-hour traffic.

Allowing this degree of flexibility in heterogeneity demands a lot from the data. In

order to balance this flexibility with precision in the estimation, I force the hour-of-the-

day fixed effects to be the same for each three-hour block. This increases the precision

of the estimates while still capturing the fact that drivers have different preferences for

breaks across the day.

6.3 Results

As a benchmark, I start by showing the estimation results ignoring heterogeneity.

The main reason for doing so is to compute standard errors and compare the implied

confidence intervals of the parameters to the distributions I obtain after accounting for

heterogeneity.

Table 2 presents the results. The estimation exercise is conducted separately for

day-shift and night-shift drivers. All parameters have the expected sign. The estimate

of the fixed cost appears to indicate that it is a crucial factor in the decision to take

a break. Recall that medallion taxi drivers operate mainly in Manhattan, where the

fixed cost of taking a break includes the time cost of finding a parking space—a difficult

challenge.

To interpret the estimates of the fatigue parameters, we must remember that we are

dealing with (a) a cost that is paid each working period and (b) a cost per accumulated

unit of working period. For example, a coefficient of $0.54 for the non-recoverable

fatigue during a 9-hour shift entails a total cost of non-recoverable fatigue of $92.34.

The cost of recoverable fatigue, while smaller, is still significant. With πr = $0.09, when
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Table 2: Parameter Estimates (homogeneous drivers)

Day shift Night shift Equal (p-value)

Potential earnings (γ) 0.0458 (0.0050) 0.0923 (0.0044) < 0.001
[$1] [$1]

Non-recoverable fatigue (πp) 0.0155 (0.0060) 0.0132 (0.0032) 0.649
[$0.34] [$0.14]

Recoverable fatigue (πr) 0.0038 (0.0004) 0.0031 (0.0004) 0.434
[$0.08] [$0.03]

Rate of break util. decline (ψ) 0.2295 (0.0194) 0.3150 (0.0184) < 0.001
[$5.01] [$3.41]

Fixed cost (τ) 2.6827 (0.0704) 2.7368 (0.0666) 0.991
[$58.57] [$29.65]

Number of drivers 1397 1039
Observations 2,295,383 1,635,429

Notes: Standard errors in parentheses are obtained by bootstrap at the shift-driver level. In
brackets are the estimates normalized by the utility value of a $1 deviation in market-level
earnings (i.e. dividing by γ). The estimates are obtained from a random 15% sample of
drivers.

a driver takes no break during a shift (as with about 30% of the shifts in my sample),

the total cost of recoverable fatigue will amount to $15.39 (or 5.5 percent of average

daily earnings) for a 9-hour shift. If instead the driver had taken a break in the middle

of the shift, the total cost of recoverable fatigue would diminish by 47 percent to $8.10,

for the same number of periods worked.

It is also possible that some of the cost of fatigue gets absorbed by the hour-of-the-

day fixed effects. Indeed, if taxi drivers use a heuristic method for determining when

to take breaks that involves taking breaks at similar clock times each day, the cost

of fatigue will be included in the hour-of-the-day effect. For example, if a taxi driver

always starts between 6 AM and 9 AM, and always take a break at 11 AM, the cost of

fatigue in this case would be zero. Intuitively, this situation creates case where, after

controlling for the hour-of-the-day, the probability of taking a break is the same (i.e. no

duration dependence or πr = 0).

It is important to note that almost all the difference in valuations between day-shift

and night-shift drivers is due to the difference in γ. If we normalize γ to be the same

across both groups, then the cost of fatigue and the fixed cost is statistically similar.
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Table 3: Mean Parameter Estimates (heterogeneous drivers)

Day Shift Night Shift
Mean Std. Dev. Mean Std. Dev.

Potential earnings (γ) 0.0951 0.1748 0.1757 0.0944
[$0.73] [$1.35]

Non-recoverable fatigue (πp) 0.0700 0.0890 0.0624 0.0517
[$0.54] [$0.48]

Recoverable fatigue (πr) 0.0120 0.0143 0.0116 0.0114
[$0.09] [$0.09]

Rate of break util. decline (ψ) 0.2899 1.0287 0.5119 1.8163
[$2.24] [$3.95]

Fixed cost (τ) 3.1545 1.3072 3.2377 2.0826
[$24.32] [$24.96]

Number of drivers 8100 6090

Notes: The estimates normalized in brackets are obtained by dividing by the utility value of
a $1 deviation of market-level earnings averaged across day-shift and night-shift drivers (i.e.
dividing by the average γ across all drivers).

Figure A4 provides a graphical representation of the transition matrix of the hourly

earnings. The same estimates are used for the model with homogeneous drivers and for

the model with heterogeneous drivers given the assumption that the market conditions

apply to everyone. We observe a significant amount of persistence in this measure; the

probability of remaining in the same earnings state is always the highest.

The results from the estimation strategy accounting for heterogeneity are presented

in Table 3. The parameter estimates have the same magnitude, but the fixed cost (in

dollars) is lower while the parameters governing the cost of fatigue are higher. The full

distributions are presented in Figure A5. We observe significantly more heterogeneity

in every parameter when compared to the standard errors of the estimates from the

homogeneous drivers estimation of Table 2. This heterogeneity will be driving the large

range of valuations of labor supply flexibility I find below.

To get a sense of the fit of the model, I simulate shifts for every driver and compare

the distribution of summary statistics describing a work shift at the driver-level. For

a given driver, I draw values for potential earnings (I) and hour-of-the-day (c) from

the empirical initial values of these variables.27 The starting values for the other state

27Because I do not model the decision to start a shift, I take these values as given. If I observe a
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Figure 8: Distributions of Annual Means Across Driver
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Notes: To construct these measures, I first obtain the mean of the selected statistic for each
driver. Then I plot the resulting distribution of these averages. The PDFs are estimated
using a non-parametric kernel density estimation technique with a Gaussian kernel.

variables (ht, d
w
t , and dbt) are set to zero. Then I use the model parameters to infer the

driver’s sequence of decisions and the values of the state variables in the next period. I

iterate over every period until the driver decides to end the shift or reaches the end of

the rental period.

With the simulated shifts in hand, I compare the resulting distributions to their

empirical counterparts in the data along three dimensions: shift duration, working

hours, and duration of uninterrupted work. Figure 8 shows the three distributions. The

solid line represents the distribution found in the data. The fit is very good along all

dimensions. The largest disparity can be found in Figure 8(c). However, the difference

in means between the data and the simulation is small—only 21 minutes on a mean of

3 hours and 55 minutes.

7 Counterfactual Experiments

The estimated structural model can be used to conduct various counterfactual experi-

ments. In this section, I focus on two hypothetical experiments. First, I compare the

utility generated by the current environment, where breaks are unconstrained, to one

in which a fixed schedule applies. This allows me to compute the compensation that a

worker would require in order to accept this fixed working schedule. Second, I study

how the frequency of breaks, labor supply, and worker welfare would be affected if a

day-shift driver starting at 7AM half the times and 7:30AM the other half, I draw his initial value
from this distribution.
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‘mandatory breaks’ policy that sought to limit the number of uninterrupted work hours

were imposed.

Both counterfactuals can be seen as a modification of the choice set. First, the

fixed-schedule counterfactual is the more extreme, as the driver must select the action

dictated by the schedule, completely eliminating any choice over within-day labor supply.

The second, the ‘mandatory breaks’ policy, affects the choice set in a similar fashion,

but is more flexible. In this counterfactual, the option to work is removed (for one

period) after a predetermined number of periods of uninterrupted work.

7.1 The Value of Discretionary Breaks

In the first simulation, I quantify the value of discretionary breaks by computing the

reduction in utility per shift in switching from the unconstrained environment to a

hypothetical fixed schedule. Because the model is estimated separately by worker, this

value is driver-specific.

It should be noted that the value of discretionary breaks depends on how far the

fixed schedule deviates from the optimal schedule. For example, an extreme schedule

forcing drivers to take a 30-minute break every hour would lead to very low utility

due to the high estimated fixed cost. Therefore, the counterfactual schedule I explore

follows a realistic work schedule with two breaks: a 30-minute break after 2.5 hours and

a 60-minute break after another 2.5 hours of uninterrupted work. After the last break,

the driver works for another 2.5 hours. In total, the shift’s duration is 9 hours, with 7.5

hours of work and 1.5 hours given to breaks.

The distribution of the value of discretionary rest breaks is presented in Figure 9.

The average value for day-shift and night-shift drivers is $61 and $63, respectively.

This indicates that the average driver would require an increase in revenue of about 23

percent to accept the counterfactual fixed schedule. While the distribution for day-shift

and night-shift drivers is similar, we see a larger mass at higher values for night-shift

drivers. There is a significant amount of heterogeneity over the value of discretionary

rest breaks, irrespective of shift type. The standard deviation is $41 (equivalent to 14.7

percent of average daily earnings).

The high degree of heterogeneity in the value of flexibility has implications for

employers wishing to give their employees discretionary rest breaks. Having the ability to
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Figure 9: Value of Discretionary Breaks per Shift
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Notes: The PDFs are estimated using a non-parametric kernel density estimation technique
with a Gaussian kernel.

choose the timing and the length of breaks is likely to be highly valuable to some workers,

as my findings indicate, giving employers another tool to attract better employees

without increasing their payroll. It is also worth noting that the subjects of this study,

taxi drivers, have self-selected into this career with highly flexible work hours. Therefore,

it is perhaps unsurprising to see a high average valuation for discretionary breaks in an

industry where discretionary breaks represent the status quo.

7.2 The Effect of a Mandatory Break Policy

Policymakers have long recognized the adverse effects of lengthy uninterrupted working

hours on worker safety. This is why it is common to see regulations in this area. While

the most prevalent type of policy limits the total length of a shift, many jurisdictions

impose rules on breaks. For instance, in the United Kingdom, air traffic controllers

cannot work for more than two hours without taking a break of at least 30 minutes. In

the European Union, commercial truck drivers are required to take a break or breaks

totaling at least 45 minutes after no more than four and a half hours of driving. This

last rule is enforced with the aid of a digital device called a tachograph, which monitors

the speed of the vehicle over a period of time and is mandatory on large vehicles.

The different thresholds for the policy I consider are 5 and 6 hours. After reaching

the threshold, the driver must either take a break or end his shift. In this counterfactual
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Figure 10: Effects of Mandatory Breaks Policies
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experiment, I use the estimated model to simulate the decisions of each driver. As

a starting point, I draw starting values for the state space from the distribution of

start times for the same driver. I will then be shutting down this potential margin of

adjustment.

As we have seen above, taxi drivers value the ability to decide when to take breaks

highly. A ‘mandatory breaks’ policy, by construction, removes some of the discretion over

when to take a break. However, this policy does not imply that drivers will wait until

the end of their allowed uninterrupted work time to take a break. In this counterfactual

experiment, a driver could take a break before reaching the limit if he receives a large

shock to utility (e.g. dropping off a customer at the airport in the previous period).

In terms of the results, following the introduction of the policy, I estimate a significant

drop in driver fatigue levels. Figure 10(a) shows the distribution of average duration

of uninterrupted work. There is a clear shift to the left, indicating that the frequency

of breaks becomes higher. The difference between the 5-hour and 6-hour policy is

rather small. Figure 10(b) shows the distribution of working hours per shift (i.e. labor

supply). We observe a reduction in overall labor supply. Interestingly, while a part of

the explanation for this reduction is that drivers take more breaks, I also find that they

reduce the overall duration of their shifts—a reduction of 3.4 percent for the 6-hour

limit versus 4.4 percent for the 5-hour limit. Overall, labor supply, measured by the

number of periods worked, decreases by 6.4 percent for the 6-hour limit and 8.5 percent
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Figure 11: Welfare Loss from Mandatory Break Policy, per Shift
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Notes: The PDFs are estimated using a non-parametric kernel density estimation technique
with a Gaussian kernel.

for the 5-hour limit.

Because this policy places a restriction on taxi drivers, welfare can be affected. I

compute welfare using the same method as described in Section 7.1. The results are

shown in Figure 11. Even though a mandatory breaks policy would still preserve a lot

of flexibility, the average driver would experience a reduction in welfare equivalent to

2.1% to 3.0% of daily revenue.

Overall, these results highlight the importance of understanding the incentives at

play for taxi drivers. While a ‘mandatory breaks’ policy will increase the frequency

at which drivers take break, they also significantly reduce the average labor supply of

drivers.

8 Conclusion

The labor market is currently undergoing a profound structural transformation as we

move away from traditional employer-employee relationships toward a more decentral-

ized pattern of working in many industries. In this context, my paper has sought to

understand how workers decide when to take breaks and how much they value this

‘breaks’ flexibility. Extending the work of Chen et al. (2017) and Fréchette et al. (2018),

I develop the first dynamic model of labor supply with discretionary breaks. The model
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uses a dynamic discrete choice framework and captures worker fatigue, hour-of-the-day

effects, fixed costs of taking a break, and the opportunity cost of forgone earnings. To

estimate the model, I use high-frequency data from NYC taxi drivers. The richness

of the data allows me to account for unobserved heterogeneity in a very flexible way,

recovering the utility parameters separately for each driver.

I find that taxi drivers value discretionary breaks highly: they would require a 23

percent increase in daily revenue in order to be induced to accept a fixed break schedule.

Furthermore, I explore the effects of a mandatory break policy that limits the number

of uninterrupted hours of work. While the policy achieves its goal of increasing the

frequency of breaks, I find a significant reduction in labor supply of between 6.4 and

8.5 percent. This result is driven by taxi drivers taking more breaks and having shorter

shifts.

These results have potentially broad labor market implications. The high value placed

on discretionary breaks that I find may help explain the rapid growth of the ‘gig’ economy

in recent years and the move of many employers towards greater employee flexibility.

Moreover, quantifying the value of this non-pecuniary benefit is an understudied way

to improve the efficiency of labor contracts. The results presented in this paper suggest

that some employees would be willing to accept reduced wages if they were compensated

by having greater work flexibility.

The framework developed in this paper constitutes a general model of labor supply

with discretionary rest breaks. While the estimation strategy was implemented in a

setting with millions of observations, datasets containing information on labor supply

decisions are getting larger, more detailed, and span more sectors than ever before,

broadening the likely applicability of my framework. This paper also calls attention

to promising future research focusing on the interaction between discretionary breaks

and labor supply decisions over a medium horizon, such as weekly or monthly hours.

Finally, as non-traditional work arrangements become more and more prevalent, my

analysis highlights the need for economists to account for new margins of labor supply

adjustment, including breaks.
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Appendix A Data Construction and Cleaning

A.1 Data Cleaning Procedures

I conduct several data cleaning procedures to ensure that the results are not driven by

measurement errors or outliers. I describe them in this section.

• I flag trips that have faulty location data or that are not located within NYC 5

boroughs or in New Jersey.

• I flag trips that have negative or zero fares.

• I flag trips that ‘end’ after they start.

• I flag trips that ‘start’ before the previous trip has ended.

After aggregating trips into shifts, I remove the entire shift if it contains a flagged

trip. I do this because only removing the problematic trip would create the possibility

for a false break. Using the resulting dataset, I compute the market wage and the

average search time by region without any further restrictions. For the final analysis, I

remove the shifts that are outliers following these rules:

• Shifts shorter than 3 hours.

• Shifts longer than 12 hours.28

• Drivers with fewer than 75 observed Mon-Thu day shifts or 75 observed Mon-Thu

night shifts.

I also further restrict the analysis to drivers exhibiting behavior suggesting they

rent the medallion from a taxi garage.

A.2 Market Hourly Earnings

I construct the measure of market hourly earnings in a way similar to Thakral and Tô

(2017).

28A shift longer than 12 hours suggests the driver is not bound by the regular rental agreement.

47



The measure of hourly earnings depends on how many drivers are working. Drivers

who are not working are not included in the measure of average hourly earnings. Each

trip is associated with the preceding wait time. As mentioned in the main text, we can

categorize wait times into three groups: search time, breaks, and ‘time off work.’ For

the purpose of computing average hourly earnings, only the search time is relevant. I

impute an average search time of 7 minutes to the first trip of the shift and to the first

trip after a break.

The measure of revenue per minute from a trip i can be expressed as

Ri =
Fi

Si + Ti
,

where Fi is the total fare paid by the customer, Si is the amount of time the driver

searched for the customer, and Ti is the amount of time the trip lasted.

For every minute that the driver was either searching for the customer or driving the

customer on trip i, Ri will contribute to the measure of average earnings. The average

hourly earnings in minute m can then be defined as 60 multiplied by the average of all

search time or trips occuring during this minute.

I construct the measure of hourly earnings for every minutes of the year (all 525,600

of them). When constructing the potential earnings It, I compute the average of the

next 30 minutes.

A.3 NYC Neighborhoods and Average Search Time

One major solution to correctly identify breaks is to control for market demand. I do

this by computing the average search time in an area. In this section, I describe the

methodology for doing so.

The simplest way of computing a measure of average search time would be to compute

the average search time of all pickup in an area. One issue with this methodology arises

because it combines drivers that started looking for a customer directly after a dropoff

and drivers that drove to the location. To get a precise measure of search time, I

compute search time in a location using only pickups that follow a dropoff in the same

neighborhood.

I define a neighborhood in my analysis as a ‘community board’29 plus some large

29Community boards are comprised of volunteers and only act in an advisory capacity. They can
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non-residential areas, such as Laguardia Airport, JFK Airport, and Central Park. I also

create a zone in New Jersey to capture trips going to Newark Airport or Jersey City.

The size and location of each neighborhood can be seen on Figure A6.

If I relied only on pickups during the same hour of the year to estimate the average

search time, sample error would be a large issue. It is not rare to observe location-hour

pairs with less than 20 observations. To solve this, I instead aggregate the yearly data

at the weekly level so that for each location-hour pair, I have about 52 times more

observations. This generates a measure of average search time for a maximum of 12,096

location–hour-of-the-week pairs.

The resulting distribution of search time for two specific hours of the week is

presented in Figure A7. Not all neighborhood have data. Because more than 93% of all

pickups are located in Manhattan or at the airports, some neighborhoods do not have

enough observations to consistently estimate an average search time. I drop the shifts

for which I do not have data on average search time for a trip.

Appendix B Labor Supply Elasticity

In Section 4.4, I described how the estimates of the labor supply elasticity was affected

by the inclusion of breaks in the measure of labor supply. Here, I explain in more detail

the underlying model and why an instrumental variables approach is required.

One of the strategies used by the daily labor supply literature has been to estimate

a regression of hourly earnings on hours worked.30 The regression equation is:

ln(His) = δ ln (Eis/His) + βXis + µi + νis, (4)

where His is the duration of shift s for worker i; (Eis/His) is the hourly earnings; Xis are

covariates such as date, time, or weather; and µi is a driver fixed effect. The labor supply

elasticity is measured by δ. There are two issues with this strategy: First, anticipated

variation in hourly earnings cannot be used to identify this elasticity because it is

possible that workers wanting to work longer shifts only do so when the hourly earnings

advice the authorities on zoning or service delivery in their community.
30This strategy has been employed by Camerer et al. (1997), Chou (2002), Farber (2015), and

Schmidt (2018). Here I replicate this methodology to get a sense of how the the labor supply elasticity
would vary.
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are higher. Second, the long-recognized issue of division bias (Borjas, 1980) is present

in this setting because His appears in both the RHS and the LHS of the equation.

To address the first issue, I follow the literature and use a comprehensive set of

controls which leaves only unanticipated hourly earnings variations to identify the labor

supply elasticity. The controls include hour-of-the-week dummies, holidays, month of the

year, precipitation, temperatures below 0 degree Celsius, and modal neighborhood (the

neighborhood with the maximum number of pickups during a shift). The second issue

is addressed by instrumenting the hourly earnings of the driver by the average hourly

earnings of other drivers with an overlapping shift. To construct the instrument, I use a

random sample of 1/3 of the drivers, while the other 2/3 are used for the estimation.

Because elasticities are computed in percentages, reducing labor supply by a constant

amount would also increase the elasticity. A 30-minute increase over 7.5-hour shift is

proportionately larger than a 30-minute increase over a 9-hour shift. However, we can

carry out a simple back-of-the-envelope calculation to compute how much this would

mechanically affect the elasticity. For simplicity, suppose the average shift duration is

nine hours and drivers take on average one hour of break per shift. The elasticity of

0.256 in Table 1 means that a 10% increase in wage will result in a shift that is 13.8

minutes longer. When breaks are taken into account, the average labor supply is now 8

hours. The 13.8 minutes increase is now equivalent to 2.88% (elasticity of 0.288) instead

of 2.56%. This mechanical relationship can only explain a difference of 0.032 between

the elasticities, representing only 1/20th of the observed difference.

For comparison with the instrumental variables approach, the corresponding OLS

regression is presented in Table A3. We can see that, rather than attenuating the

negative labor supply elasticity of Panel A, netting out the breaks reduces the estimates

even more. This can be explained by the fact that another variable is introduced on

both the RHS and the LHS, increasing the scope for the division bias.
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Appendix C Additional Figures and Tables

Figure A1: Number of Taxicabs on the Road, by Clock Time
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Notes: This plot contains the supply of taxicabs on the road at each hour of the day and
shows the average number of unique medallions that were active (had picked up customer)
during a particular hour. The fall in supply in the late afternoon is due to the transition time
between day-shift and night-shift drivers. The hours from midnight to 5 AM are associated
with the previous day to match the drivers’ schedules.

51



Figure A2: Distribution of End Time of Shifts
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(b) Night-Shift Drivers

Notes: The end time is the start of the period in which the driver ended his shift. The
vertical lines represent the usual transition time (5 AM or 5 PM). Because the drivers need
to bring the car back to the garage, typically located in Queens or in Brooklyn, the end of
their shift is usually around 45 minutes earlier.
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Figure A3: Probability of Taking a Break, by Deviation from Usual Earnings
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Notes: Each bin represents a $1 increment in the deviation from anticipated earnings.
See Section A.2 for a more detailed explanation of the way market hourly earnings are
constructed.
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Figure A4: Markov Transition Matrix of Hourly Earnings
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Notes: The figure represents transition probabilities between period t (y-axis) and period
t+ 1 (x-axis). Because there is persistence, most of the probability mass is located on the
diagonal. Notice that the shading is normalized to a log-scale to show the out-of-diagonal
values more clearly.
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Figure A5: Distribution of Parameter Estimates

0.0 0.2 0.4
0

1

2

3

4

5

De
ns

ity

(a) Potential Earnings (γ)

0 2 4 6 8
0.00

0.25

0.50

0.75

1.00

De
ns

ity

(b) Rate of Break Util. Decline (ψ)

0.0 0.1 0.2 0.3
0

2

4

6

8

De
ns

ity

(c) Non-Recoverable Fatigue (πn)

0.00 0.02 0.04 0.06
0

20

40

60

De
ns

ity

(d) Recoverable Fatigue (πr)

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

De
ns

ity

(e) Fixed Cost (τ)

day-shift drivers
night-shift drivers

Notes: The PDFs are estimated using a non-parametric kernel density estimation technique
with a Gaussian kernel. In each panel, the solid line plots the distribution for day-shift
drivers and the dashed line, the distribution for night-shift drivers.
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Figure A6: Map of NYC with Neighborhoods
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Notes: The neighborhoods referred to in this map are called ‘community boards’ by NYC
officials. Yellow (medallion) taxis have the monopoly over street hailing in ‘restricted’
neighborhoods.
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Figure A7: Average Search Time
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Notes: The average search time (in minutes) in each region is computed using only observations
with the last dropoff and the next pickup in the same region, where a region is a ‘community
board.’ Further explanation is given in Section A.3. The locations of the two airports have
been removed because, as explained in Section 3.3.2, I set search time at airports to zero.
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Table A1: Summary Statistics

Selected Drivers Non-Selected Drivers
mean median std. dev. mean median std. dev.

Shifts per year 248.2 253 54.8 154.5 151 101.8

Shift length (hours) 8.6 8.8 2.1 9.0 9.0 2.6

Trips per shift 21.8 22 7.8 22.2 22 8.7

Earnings per shift 269.4 266.5 81.0 285.1 280.0 93.0

Hourly Earnings 31.4 31.4 6.0 32.1 32.2 6.5

Number of drivers 14,190 26,079

Notes: Selected drivers display behaviors that indicate they are renting their medallion from
a taxi garage and follow the 5 AM and 5 PM transition times. In general, the selected
drivers exhibit a lower level of heterogeneity. Non-selected drivers either do not display
behaviors suggesting they rent, or they are occasional or irregular drivers and do not appear
in enough shifts to allow the consistent estimation of the model. See Section 3.7 for more
details describing the selection criteria.
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Table A2: Variance Decomposition

Var. explained by: Week of the year Day of the week Driver

Shift duration 0.4% 3.9% 38.7%

Time on break 1.7% 0.5% 27.7%

Frequency of breaks 2.1% 2.1% 20.2%

Airport pickups 0.3% 1.6% 31.4%

Notes: The percentage of the variation explained by each variable is computed in a fixed
effect model where the only regressor is a constant. The percentage of the variation explained
is therefore the proportion of the variation explained by the associated fixed effects.

59



Table A3: OLS Elasticity Estimates

All Day Shift Night Shift Owner

(1) (2) (3) (4)

Panel A: Gross shift
log Hourly Earnings −0.278∗∗∗ −0.131∗∗∗ −0.285∗∗∗ −0.359∗∗∗

(0.003) (0.003) (0.003) (0.008)

Panel B: Adjusted shift (net of breaks)
log Hourly Earnings −0.480∗∗∗ −0.462∗∗∗ −0.507∗∗∗ −0.544∗∗∗

(0.002) (0.003) (0.003) (0.007)

Driver Yes Yes Yes Yes
Weather Yes Yes Yes Yes
Location Yes Yes Yes Yes
Date/Time Yes Yes Yes Yes
Observations 4,894,002 2,148,223 2,151,782 566,344

Notes: Clustered standard error are in parentheses (driver level). Controls include weather
(temperature and precipitation), location fixed effects (modal pickup neighborhood – 72 in
total), holiday fixed effects (9), and fixed effects for the month of the year (11) and the hour
of the week (167).
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